BFGS-GSO for Global Optimization Problems
نویسندگان
چکیده
To make glowworm swarm optimization (GSO) algorithm solve multi-extremum global optimization more effectively, taking into consideration the disadvantages and some unique advantages of GSO, the paper proposes a hybrid algorithm of Broyden–Fletcher–Goldfarb– Shanno (BFGS) algorithm and GSO, i.e., BFGS-GSO by adding BFGS local optimization operator in it, which can solve the problems effectively such as unsatisfying solving precision, and slow convergence speed in the later period. Through the simulation of eight standard test functions, the effectiveness of the algorithm is tested and improved. It proves that the improved BFGS-GSO abounds in better multi-extremum global optimization in comparison with the basic GSO.
منابع مشابه
Modify the linear search formula in the BFGS method to achieve global convergence.
<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...
متن کاملThe modified BFGS method with new secant relation for unconstrained optimization problems
Using Taylor's series we propose a modified secant relation to get a more accurate approximation of the second curvature of the objective function. Then, based on this modified secant relation we present a new BFGS method for solving unconstrained optimization problems. The proposed method make use of both gradient and function values while the usual secant relation uses only gradient values. U...
متن کاملOn the Global Convergence of the BFGS Method for Nonconvex Unconstrained Optimization Problems
This paper is concerned with the open problem whether BFGS method with inexact line search converges globally when applied to nonconvex unconstrained optimization problems. We propose a cautious BFGS update and prove that the method with either Wolfe-type or Armijo-type line search converges globally if the function to be minimized has Lipschitz continuous gradients.
متن کاملThe Global Convergence of Self-scale BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...
متن کاملThe Global Convergence of Self-Scaling BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCP
دوره 9 شماره
صفحات -
تاریخ انتشار 2014